شبكه ها و تطابق در گراف

دسته بندي : علوم پایه » ریاضی
فهرست مطالب
مقدمه
فصل 1
شبكه ها
1-1 شارش ها
1-2 برش ها
1-3 قضيه شارش ماكزيمم – برش مينيمم
1-4 قضيه منجر

فصل 2
تطابق ها
2-1 انطباق ها
2-2 تطابق ها و پوشش ها در گراف هاي دو بخش
2-3 تطابق كامل
2-4 مسأله تخصیص شغل

منابع

شبكه ها
1-1 شارش ها
شبكه هاي حمل و نقل، واسطه‌هايي براي فرستادن كالاها از مراكز توليد به فروشگاهها هستند. اين شبكه ها را مي‌توان به صورت يك گراف جهت دار با يك سري ساختارهاي اضافي درنظر گرفت و آن ها را به صورت كارآيي مورد تحليل و بررسي قرار داد. اين گونه گراف هاي جهت دار، نظريه اي را به وجود آورده اند كه موضوع مورد بحث ما در اين فصل مي باشد. اين نظريه ابعاد وسيعي از كاربردها را دربرمي‌گيرد.
تعريف 1-1 فرض كنيم N=(V,E) يك گراف سودار همبند بيطوقه باشد. N را يك شبكه يا يك شبكه حمل و نقل مي‌نامند هرگاه شرايط زير برقرار باشند:
(الف) رأس يكتايي مانند وجود دارد به طوري كه ، يعني درجة ورودي a، برابر 0 است. اين رأس a را مبدأ يا منبع مي‌نامند.
(ب) رأس يكتايي مانند به نام مقصد يا چاهك، وجود دارد به طوري كه od(z)، يعني درجة خروجي z، برابر با 0 است.
(پ) گراف N وزندار است و از اين رو، تابعي از E در N، يعني مجموعة اعداد صحيح نامنفي، وجود دارد كه به هر كمان يك ظرفيت، كه با نشان داده مي‌شود، نسبت مي‌دهد.
براي نشان دادن يك شبكه، ابتدا گراف جهت زمينه آن (D) را رسم كرده و سپس ظرفيت هر كمان را به عنوان برچسب آن كمان قرار مي‌دهيم.
مثال 1-1 گراف شكل 1-1 يك شبكه حمل و نقل است. در اين جا رأس a مبدأ و راس z مقصد است و ظرفيتها، كنار هر كمان نشان داده شده‌اند. چون ، مقدار كالاي حمل شده از a به z نمي‌تواند از 12 بيشتر شود. با توجه به بازهم اين مقدار محدودتر مي‌شود و نمي‌تواند از 11 تجاوز كند. براي تعيين مقدار ماكسيممي كه مي‌توان از a به z حمل كرد بايد ظرفيتهاي همة كمانهاي بشكه را درنظر بگيريم.

تعريف 1-2 فرض كنيم يك شبكة حمل و نقل باشد تابع f از E در N، يعني مجموعة اعداد صحيح نامنفي، را يك شارش براي N مي نامند هرگاه
الف) به ازاي هر كمان و
ب) به ازاي هر ، غير از مبدأ a يا مقصد z ، (اگر كماني مانند (v,w) وجود نداشته باشد، قرار مي دهيم
مقدار تابع f براي كمان e، f(e) را مي توان به نرخ انتقال داده در طول e، تحت شارش f تشبيه كرد. شرط اول اين تعريف مشخص مي‌كند كه مقدار كالاي حمل شده در طول هر كمان نمي تواند از ظرفيت آن كمان تجاوز كند، كران بالايي شرط الف را قيد ظرفيت مي‌نامند.
شرط دوم، شرط بقا ناميده مي شود و ايجاب مي كند كه، مقدار كالايي كه وارد رأس مانند v مي شود با مقدار كالايي كه از اين رأس خارج مي شود برابر باشد. اين امر در مورد همة رأسها به استثناي مبدأ و مقصد بر قرار است.
مثال 1-2 در شبكه هاي شكل 1-2، نشان x,y روي كماني مانند e به اين ترتيب تعيين شده است كه y , x=c(e) مقداري است كه شارشي مانند f به اين كمان نسبت داده است. نشان هر كمان مانند e در صدق مي كند. در شكل 1-2 (الف)، شارش، وارد رأس مي شود،5 است، ولي شارشي كه از آن رأس خارج مي شود 4=2+2 است. بنابراين، در اين حالت تابع f نمي تواند يك شارش باشد. تابع f براي شكل 1-2 (ب) در هر دو شرط صدق مي كند و بنابراين، شارشي براي شبكهء مفروض است.
دسته بندی: علوم پایه » ریاضی

تعداد مشاهده: 1294 مشاهده

فرمت فایل دانلودی:.doc

فرمت فایل اصلی: doc

تعداد صفحات: 50

حجم فایل:1,031 کیلوبایت

 قیمت: 10,000 تومان
پس از پرداخت، لینک دانلود فایل برای شما نشان داده می شود.   پرداخت و دریافت فایل
  • محتوای فایل دانلودی:


برچسب ها: شبكهتطابقگراف