جبر

دسته بندي : علوم پایه » ریاضی
جبر از شاخه های اصلی علم ریاضیات که تاریخی بیش از 3000 سال دارد.
این علم در طول تاریخ تحولات بسیاری داشته و در حال حاضر شامل شاخه های زیادی است.تاریخچه این علم به بیش از 3000 سال پیش در مصر و بابل بر می گردد .
روش های هندسی برای حل برخی از معادلات جبری استفاده می گردیده است. در قرن اول میلادی نیز بحث در مورد برخی از معادلات جبری در آثار دیوفانتوس یونانی و برهماگوپتای هندی دیده می شود.
کتاب جبر و المقابله ای خوارزمی اولین اثر کلاسیک در جبر می باشد که کلمه ی جبر یا Algebra از آن آمده است.خیام هم دیگر ریاضیدانان شهیر ایرانی است که در آثار خود جبر را از حساب تمیز داده و گامی بزرگ را در تجرید و پیشرفت این علم برداشت.
در قرن 16 میلادی، روش حل معادلات در جه سوم توسط دل فرو(Scipione del Ferro ) و معادلات درجه چهارم توسط فراری(Ludovico Ferrari ) کشف گردید
اواریست گلرا(Evariste Galois ) ریاضیدان فرانسوی که در 20 سالگی در جریان انقلاب فرانسه در یک دوئل کشته شد بیشترین سهم را در پیشرفت و تجرید این علم داشت که نوشته های او سالها پس از مرگش، پس از مطالعه و بررسی توسط دیگر ریاضیدانان موجب تحول عظیم در این علم گردید.
نیلزهنریک ایل(Niels Henrik Abel ) نروژی اولین کسی بود که ثابت کرد معادلات درج 5 به بالا بوسیلة رادیکالهای حل پذیر نیستند.
کارل فریدریش گارس(Carl Friedrich Gauss )ریاضیدان آلمانی که تأثیرات ژرفی در توسعة شاخه های مختلف برداشته، سهم زیادی در پیشرفت این علم داشت که مهمترین آن همانا قضیه اساسی جبر می باشد.
پس از کارهای اویلر، لاگرانژ، گاوس، کوشی و بسیاری دیگر از بزرگترین ریاضیدانان تاریخ، علم جبر به قرن بیستم رسید که با شروع این قرن و به دلیل کشف تناظرهای شاخه هایی از این علم با شاخه هایی از هندسه، این علم در شاخه های مختلف پیش رفت.
از جمله بزرگترین پیشرفت های جبر و ریاضیات از این قرن، کلاس بندی گروههای سادة متناهی می باشد.

کلاس بندی
جبر مقدماتی: دراین شاخه از جبر ویژگیهای اصل چهارگانه در دستگاه اعداد حقیقی ثبت می شود. علائمی تعریف می شوند که بوسیله آن اعداد ثابت و متغیرها از هم تفکیک می گردد و روشهایی که برای حل معادلات مورد استفاده قرار می گیرد.
جبر مجرد: این شاخه ساختار های جبری از قبیل گروهها، حلقه ها، و میدان ها تعریف می شوند و در مورد خصوصیات آنها بحث می شود این شاخه از جبر که حوزه پژوهش بسیاری از ریاضیدانان معاصر خود به شاخه های مخلتفی تقسیم می شود:
جبر جابجایی
جبر ناجابجایی

زندگی کارل فریدریش گاوس
کارل فریدریش گاوس فرزند باغبان فقیری از اهالی برونشویک آلمان بود که در تاریخ 30 آوریل سال 1777 متولد شد پدرش مردی شرافتمندو مادرش زنی فعال و باهوش بود و گاوس بیش از سه سال نداشت که پدرش در اثر اشتباهی که در حساب ورقه ای بود مطلع ساخت و بدین ترتیب توانست استعداد فوق العاده خود را در محاسبه نشان دهد هنگامی که گاوس در مدرسه ابتدایی مشغول تحصیل بود و بیش از ده سال نداشت یک روز معلم او سر کلاس شاگردان را وادار نمود که مجموع سلسله ای از اعداد را با هم جمع کنند ولی هنوز صورت مسئله تمام نشده بود که گاوس ده ساله گفت من مسئله را حل کردم او متوجه شده بودکه اختلافات مابین دو اعداد از این سلسله مقدار پست ثابت و خود به خود دستوری برای مجموع این نوع سلسله اعداد بوجود آورد معلم او سخت متعجب شد و اظهار داشت که این کودک از من قوی تر است و من دیگر معلوماتی ندارم که به او بیاموزم گاوس در سال 1795وارد دانشگاه گوتینگن شد و در 19سالگی به حل بسیاری از مسائل که برای اویلر و لاگرانژ بی جواب مانده بود و موفق گردید گاوس نیز همچون ارشمیدس و دکارت و ایزاک نیوتن در کودکی دچار حادثه ای گردید که ممکن بود ریاضیات را از وجود او محروم سازد وی در اولین سالهای کودکی بود و طغیان آب ترعه ای را که از کنار خانه محقر ایشان می گذشت سرریز کرده بود کودک در کنار آب بازی می کرد در ترعه افتاد و چیزی نمانده بود که غرق شود و اگر برحسب تصادف کارگری که در آن نزدیکی بود وی را نجات نمی داد زندگانی گاوس به همین جا خاتمه می یافت. روز 30 مارس 1976 یکی از روزهای تاریخی دوران زندگی گاوس است در این روز یعنی درست یکماه قبل از اینکه 19 ساله شودگاوس بطور قطع تصمیم به مطالعه در ریاضیات گرفت از همین روز بود که وی دفتر یادداشت علمی خود را ترتیب داد که یکی از ذیقیمت ترین مدارک تاریخ ریاضیات می باشد و اولین مسئله ای که در آن ثبت شده است همین اکتشاف بزرگ او می باشد.این دفتر یادداشت فقط در سال 1898 در معرض مطالعه عموم قرار گرفت یعنی 43 سال بعد از وفات گاوس. گاوس در 9 اکتبر 1805 در 28 سالگی با یوهانااشتهوف از اهالی شهر براونشواریگ ازدواج می کند و در نامه ایی که سه روز بعد از نامزدی خود به دوست دانشگاهی خویش ولنگانگ بولیه نوشته است از خوشبختی خویش چنین گفتگو می کند. زندگانی هنوز به صورت بهار ابدی با رنگهای جدید و درخشان در مقابل من ایت از این ازدواج سه فرزند نصیب او شد یوزف و مینا و لودویگ نام داشتند زنش در 11 اکتبر 1809 بعد از تولد لودویک وفات یافت. اگرچه سال بعد( 4 اوت 1810) بخاطر کودکانش از نو ازدواج کرد ولی سالها بعد از زن اول خود با تأثیر بسیار گفتگو می کرد زن دوم او که میناوالدگ نام داشت دوپسر و یک دختر برایش آورد. فقر و تنگدستی گاس از یک طرف و فوت زنش از طرف دیگر بدبینی عجیبی در او بوجود آورد بطوریکه تا آخر عمر این بدبینی از او جدا نگردید ولی با وجود همه این گرفتاریها و در حالیکه نوشته بود مرگ بر این زندگی ترجیح دارد. تئوری اجسام آسمانی روی مقاطع مخروطی حل خورشید را انتشار داد و در سال 1811 مسیر ستاره دنباله دار عظیمی را محاسبه نمود و در همین سال تئوری متغیر موهومی را بیان کرد. ولی از دیگران مخفی نگهداشت بطوریکه کوشی ریاضی دان معروف دوباره مجبور به کشف آن شد و بدین ترتیب 50 سال علم ریاضی عقب بود. در سال 18333 تلگراف الکتریکی را ساخت و دو کتاب یکی در سال 1827 بنام تجسسات عممی درباره سطوح منحنی و یکی در سالهای 1843 و 1846 تحت عنوان تجسماتی درباره مسائل مربوط به مساحی عالمی منتشر ساخت و در این هنگام بود که تمام مردم معتقد بودند که گاوس بزرگترین ریاضیدان جهان است ولی گاوس به این افتخارات اهمیت نمی داد و هیچکس را نزد خود نمی پذیرفت و از خانه خارج نمی شد و تنها درمدت27 سال فقط یکبار برای شرکت در کنگره علمی به برلین مسافرت کرد. گاوس فقط با زنی بنام سوفی ژرمن اهل فرانسه ارتباط داشت این زن در سال 1816 از طرف آکادمی علوم پاریس به اخذ جایزه بزرگ ریاضیات نائل شد و گاوس به آثار والتر اسکات و ژان پول علاقه فراوان داشت در 70 سالگی به فکر آموختن زبان روسی افتاد گاوس اکتشاف خود را طی سال های 1796 تا1714 در 19 صفحه که شامل 146 اکتشاف مهم بود در سال 1898 منتشر ساخت این جزوه چندصفحه ای گنجینه بزرگی بود که دانشمندان را به کلی حیران نمود.
گاوس اکتشاف خود را همیشه بصور ت معما یادداشت می نمود و معتقد بود که فقط برای خود مطالعه می کند. وی هنگامی که در دانشگاه تحصیل می کرد کتاب خود را بنام تجسسات حسابی تمام کرد و تئوری اعداد را که تا آن زمان شکل واقعی به خود نگرفته بود بصورت دانش حقیقی درآورد لاگرانژ ریاضیدان معروف در مورد کتاب گاوس چنین اظهار داشته است. کتابی را بعنوان تجسسات حسابی منتشر نموده اید مقام علمی شما را تا ردیف بزرگترین ریاضیدانان جهان بالا برده است و قسمتی از آن که شامل اکتشافات تحلیلی است تاکنون نظیرش بوجود نیامده است. مقارن با انتشار کتاب گاوس در سال 1801 پیازی ستاره کوچک سرس را کشف نموده بود و منجمین درصدد محاسبه مدار آن برآمدند ولی محاسبه آن به استفاده از اعدادی منجر شد که چند کیلومتر طول داشتند و گاوس ریاست رصدخانه گوتینگن را به دست آورد. گاوس در سالهای آخر زندگی مورد توجه و محبت عمومی قرار داشت ولی آنقدر که شایستگی داشت از نعمت خوشبختی بهره مند نبود. درا بتدای سال 1855 کم کم از تصلب عضلات قلب و اتساع حفره های ریوی رنج می برد و آثار آب آوردن در او هویدا شد. آخرین نامه ای که نوشت خطاب به سردیویه یوستر« فیزیکدان انگلیسی» و درباره اکتشاف تگراف الکتریکی بود صبح روز 23 فوریه 1855 در سن 78 سالگی با آرامش کامل جان سپرد در قلمرو ریاضیات نام او تا ابد جاوید خواهد ماند.

تأملی بر سرگذشت اورایست گالوا، ریاضیدان بدشناس فرانسوی
ریاضیدانان بزرگ معمولاً سرگذشتی غیرداستانی دارند یا بطور دقیق تر، داستان زندگی آنها را نوآوری ها و دستآوردهای ریاضیاتشان تشکیل میدهد که غیر ریاضیدان ها به سختی می توانند آن را درک کند بزرگترین استثناء این قاعده اواریست گالوا است. آنچه از زندگی گالوا میدانیم بیشتر شبیه به یک داستان رمانتیک و بلکه تراژدی است. زیرا در تراژدی حتماً نباید قهرمان داستان به طرز فیجعی کشته شود بلکه تراژدی را می توان بعنوان سرکوب نمودن نبوغ یک نابغه و در نظر نگرفتن و توجه نکردن به او نیز دانست.
اواریست گالوا را حتی کسانی که دستی بر ریاضیات دارند، هم نمی شناسند چه رسد به افراد عادی که بیشتر ریاضیدانان بزرگ و مشهوری چون نیوتن، اویلر و ...... را می شناسند. اواریست گالوا را حتی دانشجویان هم بخوبی نمی شناسند.
« اواریست گالوا را بهتر بشناسیم .....
ریاضیدان نابغه فرانسوی(1832-1811) از بنیانگذاران جبر نوین و پایه گذار نظریه گروههاست. وی در عمر کوتاه خود( 21 سال) توانست شرایط امکان حد معادلات بوسیله رادیکالها را بررسی کند.
گالوا در نزدیکی پاریس از والدین تحصیل کرده متولد شد و پس از تحصیل نزد مادرش، در 12 سالگی وارد مدرسه شد. در کارهای جاری مدرسه میانه حال بود.
اثر لژاندر دست یافت تحت تأثیر آن قرار گرفت. می گویند که او این کتاب را مانند یک داستان خوانده است و با Elements de Geometrie هنگامی که به کتاب یک بار خواندن بر آن احاطه یافته است.
او سپس به کارهای لاگرانژ و آبل پرداخت و در سن 15 سالگی یک خواننده ی حرفه ای بود و خود شروع به کشفیات کرد. متأسفانه کارهایش منظم نبود. و اکثر محاسبات را ذهنی انجام داده و فقط نتایج را یادداشت می کرد.
او دوبار برای پذیرفته شدن در مدرسه ی پلی تکنیک تلاش کرد و به دلیل عدم آمادگی اساسی رد شد. دراین رد شدنها خسران زیادی برای علم ریاضیات بود زیرا این مدرسه که ریاضیدانان بزرگی را تربیت کرده بود می توانست استعداد گالو را کشف کند و محیط لازم را برای وی فراهم آورد.
با این حال گالوا به کشفیات در معادلات چندجمله ای ادامه داد و در سال 1829 بعضی از نتایجش را به آکادمی علوم تسلیم نمود. داور، گشی بودکه توانایی درک آنها را داشت، ولی گشی دستنویس های گالوا را گم کرد و دیگر پیدا نشد!! گالوای شعاع کارهایش را در مسابقه سال 1830 جایزه ی بزرگ آکادمی در ریاضیات شرکت داد. ولی « فوریدا » مقاله را با خود به خانه برد و قبل از خواندن آن مقاله فوت کرد . پس از این ماجرا،گالوا نسخه ی دوم مقاله اش را به آکادمی فرستاد اما این بار« پواسون» آن را خواند و آن را ناقص اعلام کرد.
به خاطر این وقایع یا بخاطر آنکه پدرش طرفداری جمهوری بود. گالوا به تنقید از رژیم بوربونها دست زد و به گارد ملی، یعنی سازمان جمهوریخواهان، پیوست. دراین زمان فرانسه گرفتار آشوب های سیاسی بود و گالوا مرتب به زندان می افتد. اما در سال 1832 آزاد شد. در همین زمان گرفتار عشق دختری شد. جزئیات این امر روشن نیست، اما یک چیز واضح است که او درگیر یک دوئل برای رسیدن به این دختر شد. گالوا تصمیم گرفت این دوئل را انجام دهد گالوا در شب قبل از مرگش در این دوئل می نویسد:« من قربانی یک زن عشوه گر گمنام شده ام..... این یک نزاع اسف بار است که جان مرا می ستاند. آه چرا باید برای یک موضوع بی ارزش بمیرم...» او همچنین نامه ای به دوستش نوشت و کشفیات خود را بطور خلاصه بیان کرد. این یک سند غم انگیز و دل خراش بجا مانده از گالوا است که در حاشیه اش نوشته:« من وقت ندارم». این سند که با خواهش از ژاکوبی یا گاوس برای اینکه نظرشان را "نه در مورد درستی بلکه در مورد اهمیت این قضایا" بیان می کنند پایان می یابد.
صبح روز بعد این دوئل انجام شد دوئل با طپانچه در 25قدمی صورت گرفت. تیر به شکم گالوا خورد و به زمین افتاد تا آنکه دهقانی که از آنجا عبور می کرد او را به بیمارستان Montparmasse رساند . گالوا روز بعد یعنی31ماه می سال 1832 در سن 20 سالگی فوت کرد و در بخش عمومی قبرستان مونت پارناس به خاک سپرده شد.

محمدبن موسی خوارزمی
محمدبن موسی خوارزمی از دانشمدان بزرگ ریاضی و نجوم می باشد شهرت علمی خوارزمی مربوط به کارهایی است که در ریاضیات مخصوصاً در رشته جبر انجام داده بطوریکه هیچ یک از ریاضیدانان قرون وسطی مانند وی در فکر ریاضی تأثیر نداشته اند.
خوارزمی کارهای دیوفانتوس را در رشته جبر دنبال کرد و به بسط آن پرداخت، خود نیز کتابی در این رشته بنام(جبر و مقابله) نوشت معمولاً در حل معادلات دو عمل معمول است. خوارزمی این دو را تنفیح و تدوین کرد و از این راه به واردساختن جبر به مرحله علمی کمک شایانی انجام داد.
خدمات شایان دیگر خوارزمی به جهان علم این است که وی حساب هندی و ارقام هندی را در دنیای متمدن انتشار داد.
اروپائیان را با استعمال صفر برای نشان دادن مرتبه خالی آشنا ساخت. هنگامی که درقرن دوازدهم کتاب خوارزمی به زبان لاتین ترجمه شد این ارقام که به غلط در« ارقام عربی» نامیده می شوند از طریق آثار فیتونانجی به اروپا وارد گردید. همین ارقام است که انقلابی در ریاضیات بوجود آورد و هرگونه اعمال محاسباتی را مقدور ساخت. باری کتاب جبر و مقابله خورازمی قرنها در اروپا مأخذ و مرجع دانشمدان و محققین بوده و بوهاسن هبسبانیس و گراردوس کرمونسیس و رابرت جستری در قرن دوازدهم هر یک آن را به زبان لاتین ترجمه کردند. خوارزمی در سایر رشته های علوم و مخصوصاً نجوم هم کارهای جالب و سودمندی انجام داد. ازجمله دو کتاب در اصطرلاب نوشت.
اطلسی از نقشه آسمان و زمین تهیه کرد و نقشه های جغرافیایی بطلمیوس را اصلاح کرد.
آثار و تصنیفات خوارزمی
محمد بن موسی خوارزمی
این دانشمند بزرگ در سال 820- م ( در زمان خلافت بنی عباس در بغداد) در حدودبین سالهای 200-195 هجری کتابی به نام جبر و مقابله را نوشت که در آن به هیچ وجه از حروف و علامات استفاده نشده بود ولی حل معادلات را به دو طریق که ما امروز جمع جبری- عمل متشابه ونقل جمعی از یک طرف به طرف دیگر می نامیم انجام می داد. اگر نتوانیم محتوی این کتاب را هنوز علم جبر جدید بنامیم از آنجا که اساس این کتاب براستفاده از علائم اختصاری بوده است، میتوان لااقل پیدایش آن را یکی از مراحل مهم علم جبر دانست برای رسیدن به نتیجه قطعی فقط می بایست یک قدم برداشت از قرار معلوم این قدم چندان سهل نبوده است زیرا مدت هفت قرن و نیم طول کشید تا این کار آخری نیز انجام شد. بنابراین خوارزمی نخستین کسی است که علم جبر را پایه گذاری نموده و یکی از مراحل مهم این علم را پیدا نموده است. استخراج التاریخ زیج اول و زیج ثانی که این دو زیج بسند هند معروف و محل اعتماد اهل فن بوده است.
دیگر صوره الارض با رسم افریقیه می باشد و عمل الاسطرلاب مختصر من الحساب و الجبر والمقابله که در لندن چاپ شده که مشهورترین تألیفات اسلامی علم جبر همین کتاب جبر و مقاله خورازمی است که ظاهراً پس از اطلاع از علم جبر در یونان و ایران و هند جبر عربی را استخراج کرد همانطور که زیج خوارزمی جامع افکار و آرای علمای هند و ایران و یونان در آن موضوع می باشد و شارحین اسلامی کتاب خوارزمی را مکرر شرح داده اند. دیگر استخراج تاریخ الیهود و اعبادهم( تاریخ یهود و عبدهای آنان) بهرحال کتب یونانی( فلسفی و علمی) چون این علوم بیگانه به عربی ترجمه می شد و حساب هم جزء آن علوم ترجمه رایج گشت و مهندسان و هیئت شناسان حساب آموختند ولی کسی که فقط متخصص در حساب باشد میان مسلمانان کم بوده، از بزرگترین ما در تمدن اسلام آنکه حساب هندی و ارقام هندی را در دنیای متمدن انتشار دادند عربها این ارقام را هندی می گویند زیرا از هندیها آموخته اند و فرنگی ها آنرا عربی می نامند چون از عربها گرفته اند.
نخستین کسی که این ارقام را از هندی به عربی انتقال داد ابوجعفر محمدبن خوارزمی مذکور در فوق می باشد که او در جدولها رقم های هندسی را بکار برد و این کار در سال 197 هجری قمری انجام گرفت، این جدول ها مبناء و ماخذ کارهای منجمان بوده و از همان کلمه ی الخوارزم اروپائیان لفظ الگوریزم را ساخته اند. در زبانهای اروپایی که اساس محاسبه بر مبنای اعشاری ده را با الگوریتم می گویند اصل آن همان کلمه الخوارزمی است.
مسلمانان در وضع و شرح علوم از جمله علم جبر حق تقدم داشتند زیرا از ترجمه علوم یونانی، دو کتاب که در علم جبر که یکی تألیفات،دیوفانتوس و دیگری تألیف ابرخس بود و به عربی ترجمه شده بود بسیار ناچیز بوده است.
چنانکه اکنون علمای فن هم پس از بررسی و تحقیق در این موضوع تشخیص داده اند که دو کتاب مزبور( در عالم جبر) که از یونانی به عربی ترجمه شده چیز مهمی نبوده و اساس علم جبر را مسلمانان و عرب ها وضع کردند و اروپائیها علم جبر را از کتبی که مسلمین نوشته اند استفاده کرده اند.









عبارت جبری
به عبارت ریاضی که روی مجموعه اعداد بیان شده باشد، عبارت جبری گفته می شود. هر عبارت جبری شامل نمادها، و حرفهایی است که بیانگراعدادندو شامل نشانه های مربوط به روابط و عملیاتی است که باید روی آن اعداد عمل شود.( از این نظر که به کار بردن حروف و علامات نخستین بار در علم جبر معمول شده است در بعضی از نوشته ها، آثار، هر عبارت تحلیلی را عبارت جبری نامیده اند) در هر عبارت جبری، عددها، حرفهایی را که جا نگهدار عددهای معین و مشخص باشند مقادیر معلوم وحرف هایی را که نمایانگر عددهای غیرمشخص باشند مقادیر متغیر یا متغیرهای آن عبارت می نامند. به حرفهای نشان دهنده های مقادیر معلوم پارامتر نیز میگویند. هر عبارت جبری برحسب متغیرها، یا متغیرهای آن عدد می شود و برحسب تعداد متغیرها آن را عبارت یک متغیری،عبارت دومتغیری،.... یا عبارات چندمتغیری می نامند عبارت با یک متغیر x را با و عبارت با تغییر متغیرهای را با نشان می دهند مانند:
دسته بندی: علوم پایه » ریاضی

تعداد مشاهده: 2431 مشاهده

فرمت فایل دانلودی:.doc

فرمت فایل اصلی: doc

تعداد صفحات: 130

حجم فایل:2,431 کیلوبایت

 قیمت: 13,000 تومان
پس از پرداخت، لینک دانلود فایل برای شما نشان داده می شود.   پرداخت و دریافت فایل
  • محتوای فایل دانلودی:


برچسب ها: جبر