تاریخچه و روش و علت محاسبه عدد π

دسته بندي : عمومی » گوناگون
عدد پی:
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819628810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609...



فهرست مطالب
عنوان
مقدمه
تاریخچه
تقریب اعشاری عدد پی
روش ارشمیدس برای محاسبه عدد پی
چرا عدد پی را محاسبه می کنیم؟
با سوزن عدد "PI" را حساب کنید 9
عدد پی تا 400 رقم اعشار
روز جهانی پی
منابع




مقدمه
عدد پی عددگنگی است که در اکثر محاسبات ریاضی به نحوی حضور دارد و از مهمترین اعداد کاربردی در ریاضیات می‌باشدو آن را با نمایش می‌دهند. در هندسه اقلیدسی دو بعدی، این عدد را نسبت محیط دایره به قطر دایره و یا مساحت دایره ای به شعاع واحد تعریف می‌کنند. در ریاضیات مدرن این عدد را در علم آنالیز و با استفاده از توابع مثلثاتی ، به صورت دقیق ریاضی تعریف می‌کنند.به عنوان نمونه عدد پی رادو برابر کوچکترین مقدار مثبت x ،که به ازای آن cos(x)=0 میشود تعریف می‌کنند.
تاریخچه
بابلیان هنگامی که می‌خواستند مساحت دایره را حساب کنند،مربع شعاع آن را در 3 ضرب می‌کردند.البته لوح‌های قدیمی تری از بابلیان وجود دارد که مشخص می‌کند آنها مقدار تقریبی پی را برابر3.125 می‌دانستند.در مصر باستان مساحت دایره را با استفاده از فرمول محاسبه می‌کردند.( d قطر دایره در نظر گرفته می‌شد )که در نتیجه مقدار تقریبی عدد پی 3.1605 بدست می‌آید.


________________________________________
تقریب اعشاری عدد پی
اولین نظریه در مورد مقدار تقریبی عدد پی توسط ارشمیدس بیان شد.این نظریه بر پایه تقریب زدن مساحت دایره بوسیله یک شش ضلعی منتظم
محیطیو یک شش ضلعی منظم محاطی استوار است.
ریاضیدانان اروپایی در قرن هفدهم به مقدار واقعی عدد پی نزدیک‌تر شدند.از جمله این دانشمندان جیمز گریگوری بود که برای پیدا کردن مقدار عدد پی از فرمول زیر استفاده کرد:

یکی از مشکلاتی که در این روش وجود دارد این است که برای پیدا کردن مقدار عدد پی تا 6 رقم اعشار باید پنج میلیون جمله از سری فوق را با هم جمع کنیم.
در اوایل قرن هجدهم ریاضیدان دیگری به نام جان ماشین فرمول گریگوری را اصلاح کرد که این فرمول امروزه نیز در برنامه های رایانه ای برای محاسبه عدد پی مورد استفاده قرار می‌گیرد.
این فرمول به صورت زیر است:


دسته بندی: عمومی » گوناگون

تعداد مشاهده: 2881 مشاهده

فرمت فایل دانلودی:.zip

تعداد صفحات: 17

حجم فایل:86 کیلوبایت

 قیمت: 2,000 تومان
پس از پرداخت، لینک دانلود فایل برای شما نشان داده می شود.   پرداخت و دریافت فایل
  • محتوای فایل دانلودی:
    عدد پی:
    3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819628810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609...
    فهرست مطالب
    عنوان
    مقدمه
    تاریخچه
    تقریب اعشاری عدد پی
    روش ارشمیدس برای محاسبه عدد پی
    چرا عدد پی را محاسبه می کنیم؟
    با سوزن عدد "PI" را حساب کنید 9
    عدد پی تا 400 رقم اعشار
    روز جهانی پی
    منابع
    مقدمه
    عدد پی عددگنگی است که در اکثر محاسبات ریاضی به نحوی حضور دارد و از مهمترین اعداد کاربردی در ریاضیات می‌باشدو آن را با نمایش می‌دهند. در هندسه اقلیدسی دو بعدی، این عدد را نسبت محیط دایره به قطر دایره و یا مساحت دایره ای به شعاع واحد تعریف می‌کنند. در ریاضیات مدرن این عدد را در علم آنالیز و با استفاده از توابع مثلثاتی ، به صورت دقیق ریاضی تعریف می‌کنند.به عنوان نمونه عدد پی رادو برابر کوچکترین مقدار مثبت x ،که به ازای آن cos(x)=0 میشود تعریف می‌کنند.
    تاریخچه
    بابلیان هنگامی که می‌خواستند مساحت دایره را حساب کنند،مربع شعاع آن را در 3 ضرب می‌کردند.البته لوح‌های قدیمی تری از بابلیان وجود دارد که مشخص می‌کند آنها مقدار تقریبی پی را برابر3.125 می‌دانستند.در مصر باستان مساحت دایره را با استفاده از فرمول محاسبه می‌کردند.( d قطر دایره در نظر گرفته می‌شد )که در نتیجه مقدار تقریبی عدد پی 3.1605 بدست می‌آید.
    ________________________________________
    تقریب اعشاری عدد پی
    اولین نظریه در مورد مقدار تقریبی عدد پی توسط ارشمیدس بیان شد.این نظریه بر پایه تقریب زدن مساحت دایره بوسیله یک شش ضلعی منتظم
    محیطیو یک شش ضلعی منظم محاطی استوار است.
    ریاضیدانان اروپایی در قرن هفدهم به مقدار واقعی عدد پی نزدیک‌تر شدند.از جمله این دانشمندان جیمز گریگوری بود که برای پیدا کردن مقدار عدد پی از فرمول زیر استفاده کرد:
    یکی از مشکلاتی که در این روش وجود دارد این است که برای پیدا کردن مقدار عدد پی تا 6 رقم اعشار باید پنج میلیون جمله از سری فوق را با هم جمع کنیم.
    در اوایل قرن هجدهم ریاضیدان دیگری به نام جان ماشین فرمول گریگوری را اصلاح کرد که این فرمول امروزه نیز در برنامه های رایانه ای برای محاسبه عدد پی مورد استفاده قرار می‌گیرد.
    این فرمول به صورت زیر است: