دانلود مقاله isi یک رویکرد یادگیری عمیق برای برآورد بخش حرکت برای روبات تشخیص نشت لوله

دسته بندي : فنی و مهندسی » مکانیک
دانلود مقاله isi یک رویکرد یادگیری عمیق برای برآورد بخش حرکت برای روبات تشخیص نشت لوله

زبان مقاله: انگلیسی
سال انتشار 2019

خلاصه
حرکت مسیر یک ربات می تواند یک اطلاعات ارزشمند برای برآورد بومی سازی سیستم رباتیک خودمختار باشد ،
به خصوص در محیط های بسیار پویا اما از لحاظ ساختاری شناخته شده مانند لوله های آب که در آن خوانش سنسور قابل اعتماد نیست.
تمرکز اصلی این تحقیق برآورد مکان روبات های مقیاس مزو با استفاده از یک بخش حرکت حرکتی مبتنی بر یادگیری است.
سیستم تشخیص از اندازه گیری های حسی ضبط شده در حالی که ربات از طریق سیستم لوله ای عبور می کند. این ایده مبتنی بر
طبقه بندی اندازه گیری حرکات ، به دست آمده توسط واحد اندازه گیری اینرسی (IMU) ، با بهره گیری از روش یادگیری عمیق.
ایده پیشنهادی و روش استفاده شده در بخش های مرتبط توضیح داده شده است و مشاهده شده است که شبکه عصبی حلقوی
روش بسیار قدرتمند برای غلبه بر غیرقابل اعتماد بودن داده های IMU است

Abstract
The trajectory motion of a robot can be a valuable information to estimate the localization of an autonomous robotic system,
especially in a very dynamic but structurally-known environments like water pipes where the sensor readings are not reliable. The
main focus of this research is to estimate the location of meso-scale robots using a deep-learning-based motion trajectory segment
detection system from recorded sensory measurements while the robot travels through a pipe system. The idea is based on the
classification of the motion measurements, acquired by inertial measurement unit (IMU), by exploiting the deep learning approach.
Proposed idea and utilized methodology are explained in the related sections and it is observed that convolutional neural network
approach is quite powerful to overcome the unreliability of IMU data
دسته بندی: فنی و مهندسی » مکانیک

تعداد مشاهده: 19563 مشاهده

فرمت فایل دانلودی:.pdf

فرمت فایل اصلی: PDF

تعداد صفحات: 8

حجم فایل:1,298 کیلوبایت

 قیمت: 4,000 تومان
پس از پرداخت، لینک دانلود فایل برای شما نشان داده می شود.   پرداخت و دریافت فایل
  • محتوای فایل دانلودی: